2次方程式の2つの解について,それらの和と積は,元の方程式の係数と密接な関係があり,「解と係数の関係」と呼ばれています.これは大変に重要です.
 2次方程式の2解を$\alpha,\beta$とすると,$\alpha+\beta,\alpha\beta$ の2式は,$\alpha$と$\beta$に関する対称式における基本対称式です.どんな対称式も基本対称式だけを使って書けるため,多くの場面で解と係数の関係が利用されます.

高校数学ノート

数学Ⅱ 第2章 複素数と方程式

スライド↓       ノート↓
1. 複素数 無料         【ノート
2. 2次方程式の解と判別式 無料 【ノート
3. 解と係数の関係         【ノート
4. 剰余の定理・因数定理      【ノート
5. 高次方程式           【ノート

3.1 解と係数の関係 スライド①
3.2 2次式の因数分解 スライド②

このコンテンツを閲覧するにはログインが必要です。
会員の方はログインして下さい。ログイン
会員登録はこちら