高校数学ノート[総目次]

数学B 第3章 統計的な推測

  スライド ノート
1. 確率変数と確率分布  
2. 確率変数の期待値と分散  
3. 確率変数の変換  
4. 確率変数の和と期待値  
5. 独立な確率変数と期待値・分散  
6. 二項分布  
7. 正規分布  
8. 母集団と標本  
9. 推定  
10. 仮説検定  

6.二項分布

6.1 二項分布とは

 1回の試行で事象 $A$ の起こる確率が $p$ とする.このとき事象 $A$ が起こらない確率を $q$ とすると, $q=1-p$ である.

 この試行を $n$ 回繰り返したとき,事象 $A$ の起こる回数を $X$ とすると,$X$ は確率変数となり,

\[P(X=k)={_n{\rm C}}_k\ p^kq^{n-k}\]

である.従って確率変数 $X$ の分布は次のようになる.

この確率変数 $X$ の従う分布を二項分布(binomial distribution)といい,$B(n,p)$ で表す.

例1 さいころを5回投げるとき,2以下の目が出る回数を $X$ とすると,$X$ は二項分布 $B\left(5,\dfrac13\right)$ に従う確率変数である.

例2 硬貨を3回投げるとき,表の面が出る個数を $X$ とすると,$X$ は二項分布 $B\left(3,\dfrac12\right)$ に従う確率変数である.

6.2 二項分布の期待値と分散

 ある試行で事象 $A$ の起こる確率が $p$ であるとし,この試行を $n$ 回繰り返す.$k$ 回目の試行で $A$ が起これば 1,起こらなければ 0 をとる確率変数を $X_k$ とすると,$X_k$ の期待値 $E(X_k)$ は

\[E(X_k)=0\cdot(1-p)+1\cdot p=p\]

である.この試行を $n$ 回繰り返したとき $A$ が起こる回数を $X$ とすると,$X$ の期待値 $E(X)$ は

\[\begin{align*} E(X)&=E(X_1+X_2+\cdots+X_n)\\[5pt] &=E(X_1)+E(X_2)+\cdots+E(X_n)\\[5pt] &=p+p+\cdots+p\\[5pt] &=np \end{align*}\]

 また,

\[E({X_k}^2)=0^2\cdot (1-p)+1^2\cdot p=p\]

であるから,

\[\begin{align*} V(X_k)&=E({X_k}^2)-\{E(X_k)\}^2\\[5pt] &=p-p^2\\[5pt] &=p(1-p) \end{align*}\]

となり,反復試行では各回の試行は独立であるから,確率変数 $X_1,X_2,\cdots,X_n$ も独立で,

\[\begin{align*} V(X)&=V(X_1+X_2+\cdots+X_n)\\[5pt] &=V(X_1)+V(X_2)+\cdots+V(X_n)\\[5pt] &=np(1-p) \end{align*}\]

が成り立つ.

まとめ 確率変数 $X$ が二項分布 $B(n,p)$ に従うとき, \[\begin{align*} &E(X)=np\\[5pt] &V(X)=np(1-p)\\[5pt] &\sigma(X)=\sqrt{np(1-p)} \end{align*}\]

例題 さいころを50回投げて,2以下の目が出た回数を $X$ とするとき,$E(X), V(X)$ を求めよ.

 確率変数 $X$ は,二項分布 $B\left(50,\dfrac 13\right)$ に従うから,

\[\begin{align*} E(X)&=50\cdot\frac13=\frac{50}3\\[5pt] V(X)&=50\cdot\frac13\left(1-\frac13\right)=\frac{100}9 \end{align*}\]

高校数学ノート[総目次]

数学B 第3章 統計的な推測

  スライド ノート
1. 確率変数と確率分布  
2. 確率変数の期待値と分散  
3. 確率変数の変換  
4. 確率変数の和と期待値  
5. 独立な確率変数と期待値・分散  
6. 二項分布  
7. 正規分布  
8. 母集団と標本  
9. 推定  
10. 仮説検定