このページにある内容は,例とともにこちらのスライドでわかり易く説明しています.
高校数学[総目次]
高校数学ワンポイント
スライド | ノート | |
1. ファクシミリの原理 | [無料] | |
2. バウムクーヘン分割 | [無料] | |
3. 円と放物線 | ||
4. 垂線の長さ | ||
5. 不定方程式 | ||
6. 関数の連続性は導関数に遺伝するか | ||
7. 極方程式における $r$ の正負について | ||
8. 極座標表示における扇形分割積分 | ||
9. 素因数分解の一意性 | ||
10. 三角関数の不定積分 | ||
11. シュワルツの不等式 | ||
12. 放物線と2接線で囲まれた部分の面積 | ||
13. 整式の除法(発展編) | ||
14. 3次関数のグラフの特徴 | ||
15. 曲線の長さを求める公式の証明について |

証明

図の斜線部分を $y$ 軸のまわりに1回転させてできる立体の体積を $V(x)$ とします.すると求める体積は
\[V(b)-V(a)\]
です.
$x$ が微小量 $\Delta x(>0)$ だけ変化したときの体積の変化量 $V(x+\Delta x)-V(x)$ は,$x$ から $x+\Delta x$ までの $f(x)$ の最大値,最小値をそれぞれ $M,\ m$ とすれば \[\begin{align*} \pi (x+\Delta x)^2m-&\pi x^2m\\[5pt] &\leqq V(x+\Delta x)-V(x)\\[5pt] &\hspace{20mm}\leqq \pi(x+\Delta x)^2M-\pi x^2M \end{align*}\] と評価できます.左辺と右辺を計算して, \[\begin{align*} 2\pi xm\Delta x+&\pi m(\Delta x)^2\\[5pt] &\leqq V(x+\Delta x)-V(x)\\[5pt] &\hspace{20mm}\leqq 2\pi xM\Delta x+\pi M(\Delta x)^2. \end{align*}\] 各辺を正の数 $\Delta x$ で割って, \[\begin{align*} 2\pi xm+&\pi m\Delta x\\[5pt] &\leqq \frac{V(x+\Delta x)-V(x)}{\Delta x}\\[5pt] &\hspace{20mm}\leqq 2\pi xM+\pi M\Delta x. \end{align*}\] ここで,$\Delta x\to +0$ のとき,$M\to f(x),\ m\to f(x)$ となりますから,はさみうちの原理より中辺は, \[\lim_{\Delta x\to+0}\frac{V(x+\Delta x)-V(x)}{\Delta x}=2\pi xf(x)\] です.$\Delta x < 0$のときも同様にして$\Delta x\to -0$ の極限を考えると, \[\lim_{\Delta x\to-0}\frac{V(x+\Delta x)-V(x)}{\Delta x}=2\pi xf(x)\] となりますから,結局 \[\lim_{\Delta x\to 0}\frac{V(x+\Delta x)-V(x)}{\Delta x}=2\pi xf(x)\] となります.ところで,左辺の $\displaystyle\lim_{\Delta x\to 0}\frac{V(x+\Delta x)-V(x)}{\Delta x}$ は,$V'(x)$ の定義式に他なりませんから, \[V'(x)=2\pi xf(x)\] です.つまり,$V(x)$ の導関数が $2\pi xf(x)$ なのですから $V(x)$ は $2\pi xf(x)$ の不定積分の1つであるということがわかりました.よって求める体積は, \[\begin{align*} V(b)-V(a)&=\Bigl[V(x)\Bigr]_a^b\\ &=\int_a^b\!V'(x)\,dx\\ &=\int_a^b\!2\pi xf(x)\,dx \end{align*}\] となるのです.
■
補足
円筒形を,縦に切り込みを入れて展開すると,$\Delta x$ が十分小さいとき,概略直方体になります:

この直方体の体積は \[2\pi xf(x)\,\Delta x\] です.円筒形の体積を直方体の体積で近似して,足し上げていったものがバウムクーヘン分割の式といえます.
高校数学ノート[総目次]
高校数学ワンポイント
スライド | ノート | |
1. ファクシミリの原理 | [無料] | |
2. バウムクーヘン分割 | [無料] | |
3. 円と放物線 | ||
4. 垂線の長さ | ||
5. 不定方程式 | ||
6. 関数の連続性は導関数に遺伝するか | ||
7. 極方程式における $r$ の正負について | ||
8. 極座標表示における扇形分割積分 | ||
9. 素因数分解の一意性 | ||
10. 三角関数の不定積分 | ||
11. シュワルツの不等式 | ||
12. 放物線と2接線で囲まれた部分の面積 | ||
13. 整式の除法(発展編) | ||
14. 3次関数のグラフの特徴 | ||
15. 曲線の長さを求める公式の証明について |