2次関数のグラフを学習します.$y=ax^2$ から始めて,$y=ax^2+q$, $y=a(x-p)^2$とたどり,$y=a(x-p)^2+q$ のグラフを見ます.
 それぞれにおいて,グラフ上の任意の点がどこに移動するかを考える方法を見ていきます.
 2次関数の一般形 $y=ax^2+bx+c$ は,$y=a(x-p)^2+q$ の形(平方完成)にしてからグラフを考えます.

1.1 $y=ax^2$ のグラフ
1.2 $y=ax^2+q$ のグラフ
スライド①
1.3 $y=a(x-p)^2$ のグラフ
1.4 $y=a(x-p)^2+q$ のグラフ
スライド②
1.5 $y=ax^2+bx+c$ のグラフ スライド③

スライド① $y\!=\!ax^2,y\!=\!ax^2\!+\!q$ のグラフ


スライド② $y\!=\!a(x\!-\!p)^2,y\!=\!a(x\!-\!p)^2\!+\!q$ のグラフ


スライド③ $y\!=\!ax^2\!+\!bx\!+\!c$ のグラフ