高校数学[総目次]

高校数学ワンポイント

  スライド ノート
1. ファクシミリの原理    
2. バウムクーヘン分割    
3. 円と放物線    
4. 垂線の長さ    
5. 不定方程式    
6. 関数の連続性は導関数に遺伝するか    
7. 極方程式における $r$ の正負について    
8. 極座標表示における扇形分割積分    
9. 素因数分解の一意性    
10. 三角関数の不定積分    
11. コーシー・シュワルツの不等式    
12. 放物線と2接線で囲まれた部分の面積    
13. 整式の除法(発展編)    
14. 3次関数のグラフの特徴    
15. 曲線の長さを求める公式の証明について    
16. もう迷わない!必要条件・十分条件のくすっと笑える判定方法    
17. 同じものを含む円順列の考え方    
18. $f(f(x))=x$ の形をした関数方程式の取り扱い方    
19. パラメータが2次で表された直線の通過領域    
20. 四面体の面上及び内部を表すベクトル    

12. 放物線と2接線で囲まれた部分の面積

1.よくある例題

 次は教科書によくある例題と答えです.

例題 $y=x^2$ 上の2点 $(-1,1)$,$(3,9)$ における2本の接線とこの放物線で囲まれた部分の面積 $S$ を求めよ.

解答例

 $y’=2x$ より,題意の2本の接線の方程式は

\[\begin{align*}
&y-1=-2(x+1),\\[5pt]
&y-9=6(x-3).
\end{align*}\]

です.整理して

\[y=-2x-1,\ y=6x-9.\]

 2接線の交点の $x$ 座標は,$y$ を消去した方程式

\[-2x-1=6x-9\]

を解いて,$x=1$ となります.

 従って求める面積 $S$ はグラフの上下関係を考えて,

\[\begin{align*} S&=\int_{-1}^1\!\!\{x^2-(-2x-1)\}dx+\int_1^3\!\!\{x^2-(6x-9)\}dx\\[5pt] &=\int_{-1}^1\!\!(x+1)^2dx+\int_1^3\!\!(x-3)^2dx\\[5pt] &=\left[\frac{(x+1)^3}3\right]_{-1}^1+\left[\frac{(x-3)^3}3\right]_1^3\\[5pt] &=\frac83+\frac83\\[5pt] &=\boldsymbol{\frac{16}3} \end{align*}\]

となります.

※ 最後の定積分を計算するところで,数学Ⅲで出てくる こちら の公式を使いましたが,数学Ⅲを学ばない文系の人たちにもぜひ使えるようになってほしい公式です.

 今得られた結果と計算過程から次の3つのことがわかります.

\[\frac{-1+3}2=1\]

 更に,2つの接点を通る直線の方程式を $y=l(x)$ とすると,この直線と放物線で囲まれた部分の面積 $T$ が

\[\begin{align*}
T&=\int_{-1}^3\!\{l(x)-x^2\}dx\\[5pt]
&=-\int_{-1}^3(x+1)(x-3)dx\\[5pt]
&=-\left\{-\frac{(3+1)^3}6\right\}\\[5pt]
&=\frac{32}3
\end{align*}\]

となりますから,先ほど求めた面積を $S$ とすると,

\[S:T=\frac{16}3:\frac{32}3\]

即ち

ということがいえます.

2.一般論

 実は先ほど見た結果は,任意の放物線と,任意の2接線について,いつでも成り立つことなのです.

 一般に,次が成り立ちます: