高校数学ノート[総目次]

数学A 第3章 図形の性質

1. チェバの定理      【ノート
2. メネラウスの定理    【ノート
3. チェバの定理の逆    【ノート
4. メネラウスの定理の逆  【ノート
5. 円に内接する四角形   【ノート
6. 接弦定理とその逆    【ノート
7. 方べきの定理とその逆  【ノート
8. 三角形の五心
  ・重心 【ノート
  ・外心 【ノート
  ・垂心 【ノート
  ・内心 【ノート
  ・傍心 【ノート


中学校の範囲

1. 円周角の定理    【ノート
2. 円周角の定理の逆  【ノート

1.円に内接する四角形

定理
四角形が円に内接する       
$\iff$ 対角の和が180° $(a\!+\!c\!=\!180^\circ)$    
$\iff$ 内角が,その対角の外角に等しい ($a\!=\!c’$)

証明の方針
  • 「四角形が円に内接する $\Rightarrow$ 対角の和が180°」は,円周角の定理を利用.
  • 「四角形が円に内接する $\Leftarrow$ 対角の和が180°」は,△ABDの外接円上点${\rm C}\,’$ をとり,円周角の定理の逆を利用.
  • 「対角の和が180°$\iff$内角が,その対角の外角に等しい」は明らか.

証明

「四角形が円に内接する $\Rightarrow$ 対角の和が180°」を示す.

 円周角の定理により図のようになるから,中心角に注目すると, \[2a+2c=360^\circ\] \[\therefore a+c=180^\circ\]

「四角形が円に内接する $\Leftarrow$ 対角の和が180°」を示す.

 $\angle{\rm A}+\angle{\rm C}=180^\circ\ \cdots$① であるような四角形ABCDを考える:

 △ABDの外接円Oにおいて,下図のように弧BD上に点C $’$ をとる.

 四角形AB${\rm C}\,’$Dは円に内接するから,先に示した事柄により, \[\angle {\rm A}+\angle{\rm C}\,’=180^\circ\ \ \cdots\mbox{②}\] である.
 ①,②より,$\angle{\rm C}=\angle{\rm C}\,’$.

 2点C,C$\,’$ が直線BDについて同じ側にあるから,円周角の定理の逆により4点B,$\rm{C}\,’$,C,Dは同一円周上,即ち円O上にある.
 故に四角形ABCDは円Oに内接するから4点A,B,C,Dは同一円周上にある.

 残るは「対角の和が180°$\iff$内角が,その対角の外角に等しい」の証明であるが,これは明らか.


高校数学ノート[総目次]

数学A 第3章 図形の性質

1. チェバの定理      【ノート
2. メネラウスの定理    【ノート
3. チェバの定理の逆    【ノート
4. メネラウスの定理の逆  【ノート
5. 円に内接する四角形   【ノート
6. 接弦定理とその逆    【ノート
7. 方べきの定理とその逆  【ノート
8. 三角形の五心
  ・重心 【ノート
  ・外心 【ノート
  ・垂心 【ノート
  ・内心 【ノート
  ・傍心 【ノート


中学校の範囲

1. 円周角の定理    【ノート
2. 円周角の定理の逆  【ノート