このページにある内容は,こちらのスライド(会員向け)でわかり易く説明しています.

高校数学ノート[総目次]

数学B 第1章 ベクトル

スライド↓      ノート↓
1. ベクトルと有向線分 無料  【ノート
2. ベクトルの演算 無料    【ノート
3. ベクトルの成分 無料    【ノート
4. ベクトルの内積        【ノート
5. 位置ベクトル         【ノート
6. ベクトル方程式        【ノート
7. 平面ベクトルの応用      【ノート
8. 空間ベクトル         【ノート
9. 空間ベクトルの成分      【ノート
10. 空間ベクトルの内積      【ノート
11. 空間の位置ベクトル      【ノート
12. 空間ベクトルの応用      【ノート
13. 空間のベクトル方程式     【ノート

※【ノート】はスライドの内容をまとめたものです.

11. 空間の位置ベクトル

11.1 位置ベクトル

 空間内に1点Oを固定する.
 空間内の任意の点Pの位置は, \[\overrightarrow{\mathstrut p}=\overrightarrow{\mathstrut\rm OP}\] というベクトルで決まる.このとき,$\overrightarrow{\mathstrut p}$ を点Oに関する点Pの位置ベクトルといい,位置ベクトルが $\overrightarrow{\mathstrut p}$ である点Pを ${\rm P}(\overrightarrow{\mathstrut p})$ で表す.

 2点 A$(\overrightarrow{a}),\ {\rm B}(\overrightarrow{b})$ について,\[\overrightarrow{\rm{AB}}=\overrightarrow{b}-\overrightarrow{a}\]

11.2 分点の位置ベクトル

内分点,外分点の位置ベクトル 2点${\rm A}(\overrightarrow{a}),\ {\rm B}(\overrightarrow{b})$について,線分ABを\begin{align*} &m:n\mbox{に内分する点P}(\overrightarrow{p}):\overrightarrow{p}=\frac{n\overrightarrow{a}+m\overrightarrow{b}}{m+n}\\[5pt] &m:n\mbox{に外分する点Q}(\overrightarrow{q}):\overrightarrow{q}=\frac{-n\overrightarrow{a}+m\overrightarrow{b}}{m-n}\end{align*} 特に,線分ABの中点Mの位置ベクトル$\overrightarrow{m}$は\[\overrightarrow{m}=\frac{\overrightarrow{a}+\overrightarrow{b}}2\]

補足

 平面ベクトルの場合と完全に同一である.


高校数学ノート[総目次]

数学B 第1章 ベクトル

スライド↓      ノート↓
1. ベクトルと有向線分 無料  【ノート
2. ベクトルの演算 無料    【ノート
3. ベクトルの成分 無料    【ノート
4. ベクトルの内積        【ノート
5. 位置ベクトル         【ノート
6. ベクトル方程式        【ノート
7. 平面ベクトルの応用      【ノート
8. 空間ベクトル         【ノート
9. 空間ベクトルの成分      【ノート
10. 空間ベクトルの内積      【ノート
11. 空間の位置ベクトル      【ノート
12. 空間ベクトルの応用      【ノート
13. 空間のベクトル方程式     【ノート

※【ノート】はスライドの内容をまとめたものです.