このページにある内容は,こちらのスライド(会員向け)でわかり易く説明しています.

高校数学ノート[総目次]

数学B 第1章 ベクトル

1. ベクトルと有向線分 無料  【ノート
2. ベクトルの演算 無料    【ノート
3. ベクトルの成分 無料    【ノート
4. ベクトルの内積        【ノート
5. 位置ベクトル         【ノート
6. ベクトル方程式        【ノート
7. 平面ベクトルの応用      【ノート
8. 空間ベクトル         【ノート
9. 空間ベクトルの成分      【ノート
10. 空間ベクトルの内積      【ノート
11. 空間の位置ベクトル      【ノート
12. 空間ベクトルの応用      【ノート
13. 空間のベクトル方程式     【ノート

※【ノート】はスライドの内容をまとめたものです.

6.ベクトル方程式

6.1 直線のベクトル方程式

 点${\rm A}(\overrightarrow{\mathstrut a})$ を通り,$\overrightarrow{\mathstrut d}(\neq\overrightarrow{\mathstrut 0})$ に平行な直線を $l$ とする.
 $l$ 上の点 ${\rm P}(\overrightarrow{\mathstrut p})$について,

$\overrightarrow{\mathstrut{\rm AP}}=\overrightarrow{\mathstrut 0}$ または $\overrightarrow{\mathstrut{\rm AP}}\ //\ \overrightarrow{\mathstrut d}$

であるから,

点Pが $l$ 上           
$\iff \overrightarrow{\mathstrut{\rm AP}}=t\overrightarrow{\mathstrut d}$ となる実数 $t$ が存在

が成り立つ.$\overrightarrow{\mathstrut{\rm AP}}=\overrightarrow{\mathstrut p}-\overrightarrow{\mathstrut a}$ より, \[\overrightarrow{\mathstrut p}-\overrightarrow{\mathstrut a}=t\overrightarrow{\mathstrut d}\] \[\therefore \overrightarrow{\mathstrut p}=\overrightarrow{\mathstrut a}+t\overrightarrow{\mathstrut d}\]  これを直線 $l$ のベクトル方程式といい,$t$ を媒介変数,$\overrightarrow{\mathstrut d}$ を方向ベクトルという.

注意

 方向ベクトルは実数倍の任意性がある.

例題 点(2,1)を通り,$\overrightarrow{d}=(4,3)$ に平行な直線と,$y$ 軸との交点の座標を求めよ.

 $\overrightarrow{\mathstrut p}=(x,y)$ とすると, \[(x,y)=(2,1)+t(4,3)\] \[\therefore\ \left\{\begin{array}{l} x=2+4t\\[5pt] y=1+3t \end{array}\right.\ \cdots\mbox{①}\]  $x=0$ のとき,$0=2+4t$.$\therefore t=-\dfrac12$.
 このとき $y=1+3\cdot\left(-\dfrac12\right)=-\dfrac12$.
 よって,直線は $y$ 軸と $\underline{\boldsymbol{(0,-\dfrac12)}}$ で交わる.

補足

 ①の2式より $t$ を消去すると,$3x-4y-2=0$ が得られる.

6.2 2点を通る直線のベクトル方程式

 2点 ${\rm A}(\overrightarrow{\mathstrut a})$,${\rm B}(\overrightarrow{\mathstrut b})$ を通る直線のベクトル方程式は,方向ベクトルが $\overrightarrow{\mathstrut\rm AB}(=\overrightarrow{\mathstrut b}-\overrightarrow{\mathstrut a})$ と考えて, \[\begin{align*} \overrightarrow{\mathstrut p}&=\overrightarrow{\mathstrut a}+t(\overrightarrow{\mathstrut b}-\overrightarrow{\mathstrut a})\\[5pt] &=(1-t)\overrightarrow{\mathstrut a}+t\overrightarrow{\mathstrut b} \end{align*}\]  ここで $1-t=s$ とおくと,$s+t=1$であり, \[\overrightarrow{\mathstrut p}=s\overrightarrow{\mathstrut a}+t\overrightarrow{\mathstrut b}\] と表せる.

まとめ 2点A$(\overrightarrow{a}),\ $B$(\overrightarrow{b})$ を通る直線のベクトル方程式は,\[\overrightarrow{p}=(1-t)\overrightarrow{a}+t\overrightarrow{b}\] または,\[\overrightarrow{p}=s\overrightarrow{a}+t\overrightarrow{b}\ \ (\mbox{ただし}\,s+t=1) \]

補足

 $\overrightarrow{\mathstrut a}$ と $\overrightarrow{\mathstrut b}$ で張る平面上の任意の点P$(\overrightarrow{\mathstrut p})$ は,$s,t$ を実数として \[\overrightarrow{\mathstrut p}=s\overrightarrow{\mathstrut a}+t\overrightarrow{\mathstrut b}\] と1通りに表せるが,ここに $s+t=1$ という条件が加わると,Pは直線AB上にしか存在できない

定理  $\overrightarrow{\rm{OP}}=s\overrightarrow{\rm{OA}}\!+\!t\overrightarrow{\rm{OB}}\ (s,\ t\ $ は実数) で与えられる点Pについて,\[\mbox{Pが直線AB上}\iff s+t=1\]

6.3 法線ベクトルと直線

 点 ${\rm A}(\overrightarrow{\mathstrut a})$ を通り,$\overrightarrow{\mathstrut n}(\neq\overrightarrow{\mathstrut 0})$ に垂直な直線上の点を ${\rm P}(\overrightarrow{\mathstrut p})$ とする.
 このとき,

$\overrightarrow{\mathstrut n}\perp\overrightarrow{\mathstrut\rm AP}$ または $\overrightarrow{\mathstrut\rm AP}=\overrightarrow{\mathstrut 0}$

により,$\overrightarrow{\mathstrut n}\cdot\overrightarrow{\mathstrut\rm AP}=0$. \[\therefore \overrightarrow{\mathstrut n}\cdot(\overrightarrow{\mathstrut p}-\overrightarrow{\mathstrut a})=0\]

まとめ 点A$(\overrightarrow{a})$を通り,$\overrightarrow{n}$に垂直な直線のベクトル方程式は,\[\overrightarrow{n}\cdot(\overrightarrow{p}-\overrightarrow{a})=0\]

 上の式が直線を表していることを確かめてみよう.
 $\overrightarrow{\mathstrut a}=(x_1,y_1)$,$\overrightarrow{\mathstrut n}=(a,b)$,$\overrightarrow{\mathstrut p}=(x,y)$ とすると,上の式は \[\begin{align*} (a,b)\cdot(x-x_1,\ y-y_1)&=0\\[5pt] \therefore a(x-x_1)+b(y-y_1)&=0\\[5pt] \therefore ax+by-ax_1-by_1&=0 \end{align*}\]  従って,この式は直線を表す.

 $\overrightarrow{\mathstrut n}$ を法線ベクトルという.

 逆に直線 $ax+by+c=0$ が与えられると,この直線の法線ベクトル $\overrightarrow{\mathstrut n}$ は $\overrightarrow{\mathstrut n}=(a,b)$ である.

注意

 方向ベクトルと同様に,法線ベクトルも実数倍の任意性がある.

 直線 $2x+y-4=0$ $(y=-2x+4)$ の法線ベクトル $\overrightarrow{\mathstrut n}$ は,$\overrightarrow{\mathstrut n}=(2,1)$.

6.4 円のベクトル方程式

 中心 ${\rm C}(\overrightarrow{\mathstrut c})$,半径 $r$ の円周上の点 ${\rm P}(\overrightarrow{\mathstrut p})$ は, \[|\overrightarrow{\mathstrut\rm CP}|=r\] を満たす.故に, \[|\overrightarrow{\mathstrut p}-\overrightarrow{\mathstrut c}|=r\] これを中心 ${\rm C}(\overrightarrow{\mathstrut c})$,半径 $r$ の円のベクトル方程式という.

円のベクトル方程式  点 ${\rm C}(\overrightarrow{\mathstrut c})$ を中心とし,半径を $r$ とする円のベクトル方程式は, \[|\overrightarrow{\mathstrut p}-\overrightarrow{\mathstrut c}|=r\]

 上の式が円の方程式であることを確認しよう.
 $\overrightarrow{\mathstrut p}=(x,y)$,$\overrightarrow{\mathstrut c}=(a,b)$ とおくと,上の式は \[\begin{align*} |(x-a,\ y-b)|&=r\\[5pt] \therefore \sqrt{(x-a)^2+(y-b)^2}&=r\\[5pt] \therefore (x-a)^2+(y-b)^2&=r^2 \end{align*}\]  よって確かに円の方程式である.

2点を直径の両端とする円

 2点 ${\rm A}(\overrightarrow{\mathstrut a})$,${\rm B}(\overrightarrow{\mathstrut b})$を直径の両端とする円周上の点を ${\rm P}(\overrightarrow{\mathstrut p})$ とすると,

$\overrightarrow{\mathstrut\rm AP}\perp\overrightarrow{\mathstrut\rm BP}$ または $\overrightarrow{\mathstrut\rm AP}=\overrightarrow{\mathstrut 0}$ または $\overrightarrow{\mathstrut\rm BP}=\overrightarrow{\mathstrut 0}$

であるから, \[\overrightarrow{\mathstrut\rm AP}\cdot\overrightarrow{\mathstrut\rm BP}=0\] \[\therefore (\overrightarrow{\mathstrut p}-\overrightarrow{\mathstrut a})\cdot(\overrightarrow{\mathstrut p}-\overrightarrow{\mathstrut b})=0\]

 2点 ${\rm A}(\overrightarrow{\mathstrut a})$,${\rm B}(\overrightarrow{\mathstrut b})$を直径の両端とする円のベクトル方程式は, \[(\overrightarrow{\mathstrut p}-\overrightarrow{\mathstrut a})\cdot(\overrightarrow{\mathstrut p}-\overrightarrow{\mathstrut b})=0\]

 この式が円を表すことを確かめよう.

    中心の位置ベクトル $:\dfrac{\overrightarrow{\mathstrut a}+\overrightarrow{\mathstrut b}}2$
       半径     $:\dfrac{|\overrightarrow{\mathstrut a}-\overrightarrow{\mathstrut b}|}2$
 よって, \[\begin{align*} &\left|\overrightarrow{\mathstrut p}-\frac{\overrightarrow{\mathstrut a}+\overrightarrow{\mathstrut b}}2\right|=\frac{|\overrightarrow{\mathstrut a}-\overrightarrow{\mathstrut b}|}2\\[5pt] \iff&\left|\overrightarrow{\mathstrut p}-\frac{\overrightarrow{\mathstrut a}+\overrightarrow{\mathstrut b}}2\right|^2=\left(\frac{|\overrightarrow{\mathstrut a}-\overrightarrow{\mathstrut b}|}2\right)^2\\[5pt] \iff&\left|\overrightarrow{\mathstrut p}-\frac{\overrightarrow{\mathstrut a}+\overrightarrow{\mathstrut b}}2\right|^2-\left(\frac{|\overrightarrow{\mathstrut a}-\overrightarrow{\mathstrut b}|}2\right)^2=0\\[5pt] \iff&\!\left(\!\overrightarrow{\mathstrut p}\!-\!\frac{\overrightarrow{\mathstrut a}\!+\!\overrightarrow{\mathstrut b}}2\!-\!\frac{\overrightarrow{\mathstrut a}\!-\!\overrightarrow{\mathstrut b}}2\right)\!\cdot\!\left(\!\overrightarrow{\mathstrut p}\!-\!\frac{\overrightarrow{\mathstrut a}\!+\!\overrightarrow{\mathstrut b}}2\!+\!\frac{\overrightarrow{\mathstrut a}\!-\!\overrightarrow{\mathstrut b}}2\right)\!=\!0\\[5pt] \iff&(\overrightarrow{\mathstrut p}-\!\overrightarrow{\mathstrut a})(\overrightarrow{\mathstrut p}-\overrightarrow{\mathstrut b})=0 \end{align*}\]

 


高校数学ノート[総目次]

数学B 第1章 ベクトル

1. ベクトルと有向線分 無料  【ノート
2. ベクトルの演算 無料    【ノート
3. ベクトルの成分 無料    【ノート
4. ベクトルの内積        【ノート
5. 位置ベクトル         【ノート
6. ベクトル方程式        【ノート
7. 平面ベクトルの応用      【ノート
8. 空間ベクトル         【ノート
9. 空間ベクトルの成分      【ノート
10. 空間ベクトルの内積      【ノート
11. 空間の位置ベクトル      【ノート
12. 空間ベクトルの応用      【ノート
13. 空間のベクトル方程式     【ノート

※【ノート】はスライドの内容をまとめたものです.